Supporting information

A triazatruxene-based molecular dyad for single-component organic solar cells

Antoine Labrunie ^a, Giacomo Londi ^b, Sergey V. Dayneko ^c, Martin Blais ^a, Sylvie Dabos-Seignon^a, Gregory C. Welch^c, David Beljonne^b, Philippe Blanchard^{a,*}, Clément Cabanetos a,*

Email(s): philippe.blanchard@univ-angers.fr; clement.cabanetos@univ-angers.fr

^a CNRS UMR 6200, MOLTECH-Anjou, University of Angers, 2 Bd Lavoisier, 49045 Angers, France ^b Chimie des Matériaux Nouveaux & Centre d'Innovation et de Recherche en Matériaux Polymères, Université de Mons - UMONS / Materia Nova, Place du Parc, 20, B-7000 MONS

^c Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada

NMR Spectra:

Figure S1: ¹H NMR (300 MHz) of TAT-Br in CDCl₃ at 20 °C.

Figure S4 : ¹H NMR (300 MHz) (top) and ¹³C NMR (76MHz) (bottom) of TAT-σ-N₃ in CDCl₃ at 20 °C.

Figure S5 : HRMS of TAT-σ-N₃

Figure S7: HRMS of TAT-σ-C₆₀.

Computational Chemistry

Figure S8: TAT-σ-N₃ HOMO and LUMO and their corresponding energies calculated in vacuum (top) and including dichloromethane molecules as a polarizable continuum (bottom).

Electrochemical data:

Figure S10. Cyclic voltammograms of **TAT-\sigma-N₃** (red), **TAT-\sigma-C₆₀** (purple), and the **PC**₆₁**BM** (blue) in 0.1 M Bu₄NPF₆/CH₂Cl₂, scan rate 100 mV s⁻¹, Pt working and counter electrode

Photovoltaic data:

Table S1. Photovoltaic data obtained from active layers processed with different solvents

Processing	Voc	Jsc	FF	PCE
solvent	(V)	(mA.cm ⁻¹)	(%)	(%)
CB	0.41	1.77	31.3	0.22
CF	0.81	1.80	28.6	0.41
MeTHF	0.04	1.40	24.5	0.01

Figure S11. J–V characteristics measured under AM 1.5 simulated solar light under illumination (100 mW.cm⁻²) of the best devices processed with CB (bleu), CF (black) and MeTHF (red)

Atomic Force Microscopy:

Chlorobenzene (CB) processed active layers: RMS = 0.65 nm

Chloroform (CB) processed active layers: RMS = 0.65 nm

2-methyltetrahydrofuran (MeTHF) processed active layers: RMS = 21 nm

Figure S12. 2D and 3D surface topography images of the different active layers probed by atomic force microscopy